
MATH 124B: TAKE HOME FINAL

Any theorems covered during lecture or in Strauss’ PDE textbook, including its appendix can
be referenced. Any other theorems or nontrivial claims must be provided with proof. A claim is
nontrivial if you do not know why its true., i.e. no “From Theorem 2 of Book X”.

Due in class on Thursday or online Friday

(1) Derive the Laplacian in spherical coordinates.

(2) Compute the sum
∞∑
n=1

1

n8
. You may use previously established sums. Then explain how

one could obtain the sum for
∞∑
n=1

1

n2k
for any k ∈ N.

(3) Derive Poisson’s formula for D = {(r, θ) ∈ R2 | r > a > 0}, given by

u(r, θ) = (r2 − a2)
∫ 2π

0

h(φ)

a2 − 2ar cos(θ − φ) + r2
dφ

2π

where u is a solution of
uxx + uyy = 0 for r > a

u = h(θ) for r = a

u is bounded as r →∞.

(4) A function u(x, y) is subharmonic in D if ∆u ≥ 0 in D. Prove that its maximum value is
attained on ∂D. Then show that it also satisfies the mean value inequality

u(0) ≤ 1

2π

∫ 2π

0

u(r, θ)dθ

for all r > 0 such that B(0, r) ⊂ D.

(5) Show that the second smallest eigenvalue for the Neumann function is λ2 > 0.

(6) Let g(x) be a function on ∂D. Consider the minimum of the functional

1

2

∫∫∫
D

|∇w|2dV −
∫∫∫

D

fwdV

among all C2 functions w for which w = g on ∂D. Show that a solution of this minimum
problem leads to a solution of the Dirichlet problem{

−∆u = f in D

u = g on ∂D.
1
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(7) The Neumann function N(x, y) for a domain D is defined much like the Green’s function,
except for the boundary condition is replaced by

∂N

∂n
= c, on ∂D,

for some constant c. Show that c = 1
A

where A is the area of ∂D, (c = 0 if A =∞). Then
state and prove a theorem expressing the solution of the Neumann problem in terms of the
Neumann function, (Theorem 7.3.1 in Strauss).

(8) Compute the eigenvalues of the 2 dimensional rectangle,{
∆u+ λu = 0 on [0, a]× [0, b]

u = 0 on ∂D.

(Use separation of variables)

Solution

(1) One can directly compute using chain rule, however, there is an elegant way given in the
textbook.

(2) There are multiple ways to do this, one way is the following: First compute the Fourier
cosine series for x3 (0, π). Then for n 6= 0,

An =

{
6π
n2 n even
24
n4π
− 6π

n2 n odd .

and

A0 =
π3

4
,

keeping in mind that the A0 term is not multiplied by 2 in using Parseval’s identity. By
Parseval’s identity,

∞∑
n=0

|An|2
∫ π

0

cos2(nx)dx =

∫ π

0

x6dx

Therefore, ∑
n even

36π2

n4
+
∑
n odd

(
(24)2

n8π2
− 288

n6
+

36π2

n4

)
=

9π6

56
.

Note that

∫ π

0

cos2(nx)dx =
π

2
. Using the previously established sums:

∑
n odd

1

n6
=

π6

960∑
n odd

1

n4
=
π4

96∑
n even

1

n4
=

π4

1440
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Then
(24)2

π2

∑
n odd

1

n8
=

9π6

56
− π6

40
+

3π6

10
− 3π6

8
=

17π6

280
.

Let S =
∞∑
n=1

1

n8
. Then

S =
∑
n odd

1

n8
+
∞∑
n=1

1

(2n)8

=
∑
n odd

+
1

256
S

so

S =
256

255

17π8

280(24)2
=

π8

9450

In general, we compute the Fourier sine or cosine series of higher degree monomials and
use Parseval’s identity, or we can compute the Fourier cosine series of a sufficiently high
power, then evaluate at 0 and inductively compute the sum.

Remark: We never discussed the Riemann zeta function ζ(s) =
∑
n

1

ns
and some of you

used the recurrence relation to compute. While mathematically correct, such an identity
was not proved in class or given in the textbook, hence if you did not provide a proof of
the recurrence relation, you will not receive full credit for the problem.

(3) After separating by variables, we have the radial solutions given by rn + r−n. Since we are
considering the exterior of a circle with the extra condition that the solution be bounded
as it tends to infinity, we keep the constant r−n terms. Therefore,

u(r, θ) =
1

2
A0 +

∞∑
n=1

r−n(An cos(nθ) +Bn sin(nθ))

with Fourier coefficients

An =
an

π

∫ 2π

0

h(φ) cos(nφ)dφ

Bn =
an

π

∫ 2π

0

h(φ) sin(nφ)dφ.

Inserting these into the solution, we have

u(r, θ) =
1

2
A0 +

∞∑
n=1

an

rnπ

∫ π

−π
h(φ)(cos(nφ) cos(nθ) + sin(nφ) sin(nθ))dφ.

Note that this is the same case as the interior of the circle case except we use a/r instead
of r/a. Hence by changing variables R = 1/r and A = 1/a, we have from the circle case,(

1

a2
− 1

r2

)∫ 2π

0

h(φ)

a−2 − 2
ar

cos(θ − φ) + r−2
= r2 − a2

∫ 2π

0

h(φ)

r2 − 2ar cos(θ − φ) + a2
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(4) Let ε > 0 and define the function

vε(x) := u(x) + ε‖x‖2.

Suppose there is an interior maximum x0. Then at this point, by the second derivative
test, we have 0 ≥ ∆vε(x0), however

∆vε = ∆u+ 4ε > 0,

which is a contradiction. Therefore,

u(x) ≤ vε(x) ≤ max
D

vε = max
∂D

vε = max
∂D

u+ 4εL2

where L = diam(D). Letting ε → 0 gives the result. Next to show the mean value
inequality, first we use Green’s first identity with D = {‖x‖ = r = a} so that∫∫

∂D

∂u

∂r
dS =

∫∫∫
D

∆udV ≥ 0.

In polar coordinates, dividing by the positive constant a,

0 ≤
∫ 2π

0

ur(a, θ)dθ =
∂

∂r

(∫ 2π

0

u(r, θ)dθ

)∣∣∣∣
r=a

So
∫ 2π

0
u(r, θ)dθ is an increasing function of r. When r → 0, it is a minimum and equals

2πu(0). Therefore

u(0) =
1

2π

∫ 2π

0

u(r, θ)dθ =
1

2πr

∫ 2π

0

u(r, θ)dSθ

where dSθ = rdθ is the surface area element. This is the proof in dimension 2, however
the essential idea is the same for any dimension.

(5) The first eigenvalue for the Neumann problem is 0. By the minimum principle (or by
energy methods), such eigenfunctions satisfy ‖∇w‖ = 0, so that the eigenfunctions are
constant. Hence, there cannot be two linearly independent eigenfunctions for 0, so λ1 is
simple and λ2 > 0.

(6) Define the energy functional

E[w] :=
1

2

∫∫∫
D

|∇w|2dV −
∫∫∫

D

fwdV.

Let u be a minimum and let w be a test function such that w = 0 on ∂D. Then u + tw
satisfies the boundary condition and

E[u] ≤ E[u+ tw]

=
1

2

∫∫∫
D

|∇(u+ tw)|2 −
∫∫∫

D

f(u+ tw)

=
1

2

∫∫∫
D

|∇u|2 + t

∫∫∫
D

∇u · ∇w +
t2

2

∫∫∫
D

|∇w|2 −
∫∫∫

D

fu− t
∫∫∫

D

fw

= E[u]− t
∫∫∫

D

(∆u+ f)w +
t2

2

∫∫∫
D

|∇w|2



MATH 124B: TAKE HOME FINAL 5

Dividing by t and noting that the minimum occurs when t = 0, we have∫∫∫
D

(∆u+ f)w = 0,

for any compactly supported test function, hence we −∆u = f on D, with boundary
condition u = g on ∂D.

(7) By Green’s first identity and the harmonic integral representation formula with u = 1,

cA =

∫∫
∂D

∂N

∂n
dS

=

∫∫∫
D

∆NdV

=

∫∫∫
D

∆

(
N +

1

4π‖x− x0‖

)
dV −

∫∫∫
D

∆

(
1

4π‖x− x0‖

)
dV

= −
∫∫

∂D

∂

∂n

(
1

4π‖x− x0‖

)
dSv

= 1,

so c = 1/A.

We now will prove the following

Theorem. If N(x,x0) is the Neumann function, then the solution of the Neumann problem
is given by

u(x0) = −
∫∫

∂D

∂u(x)

∂n
N(x,x0)dS +

1

A(∂D)

∫∫
∂D

udS.

Note that the extra term comes from the fact that Neumann solutions are only unique up
to a constant.

Proof. From the integral representation formula and definition of the (Neumann) Green’s
function we have

u(x0) =

∫∫
∂D

(
u
∂N

∂n
− ∂u

∂n
N

)
dS

= c

∫∫
∂D

udS −
∫∫

∂D

∂u

∂n
NdS

�

(8) This was done during lecture, the eigenfunction is

u(x, y) = sin
(mπ
a
x
)

sin
(nπ
b
y
)
.

with eigenvalues

λm,n =
(mπ
a

)2
+
(nπ
b

)2
.
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